REVISION 3 (Solutions)

Year 11 Examination

Question/Answer Booklet

MATHEMATICS METHODS UNITS 1 AND 2 Section One: Calculator-free

Time allowed for this section

Reading time before commencing work: five minutes Working time for this section: fifty minutes

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer Booklet Formula Sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Section One: Calculator-free

This section has **nine (9)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time for this section is 50 minutes.

Question 1

A box contains a total of 500 marker and highlighter pens of various colours, as shown in the table. Some of the marker pens are permanent and the rest are non-permanent.

	Colour			
Type of pen	Black	Yellow	Pink	Green
Permanent marker	55	83	40	24
Non-permanent marker	45	67	24	12
Highlighter	0	50	46	54

A pen is selected at random from the box. Determine the probability that it is

(a) a yellow pen.

Solutio	on
83 + 67 + 50	200 2
500	$=\frac{1}{500}=\frac{1}{5}$
Specific beh	naviours
✓ correct probab	ility

(b) a marker pen.

(c) a yellow pen or a marker pen.

Solution		
200 + 350 - 83 - 67	_ 400 _	_ 4
500	500	5
Specific behavi	ours	
✓ correct probability		

(d) a green pen, given that it is a highlighter.

Solution
54 54 9
$\overline{50+46+54} = \overline{150} = \overline{25} (= 0.36)$
Specific behaviours
✓ correct probability

(1 mark)

(1 mark)

35% (51 Marks)

(4 marks)

(1 mark)

(1 mark)

(6 marks)

(a) Evaluate $\frac{m^{0.5}}{n^2}$ when $m = 4 \times 10^6$ and $n = 5 \times 10^2$, writing your answer without the use of scientific notation. (3 marks)

Solution
$\frac{m^{0.5}}{n^2} = \frac{\sqrt{4} \times 10^3}{25 \times 10^4} \\ = \frac{2}{25} \times \frac{1}{10} \\ = \frac{1}{125}$
Specific behaviours
\checkmark simplifies $m^{0.5}$
✓ simplifies n^2
✓ correct value

(b) Determine the value of x when $4^x = 32\sqrt{2}$.

Solution
$2^{2x} = 2^5 \times 2^{\frac{1}{2}}$
$=2^{\frac{11}{2}}$
$2x = \frac{11}{2} \Rightarrow x = \frac{11}{4}$
Specific behaviours
✓ LHS as power of 2
\checkmark RHS as power of 2
\checkmark equates indices and solves

Solve each equation below for x.

(a)
$$\frac{3x}{x-5} = \frac{2}{3}$$
.

Solution

$$9x = 2x - 10$$

 $7x = -10$
 $x = -\frac{10}{7}$
Specific behaviours
✓ cross multiplies
✓ correct solution

(b)
$$(x+3)(x-3) = 8x$$
.

Solution

$$x^2 - 9 = 8x$$

 $x^2 - 8x - 9 = 0$
 $(x + 1)(x - 9) = 0$
 $x = -1, \quad x = 9$
Specific behaviours
✓ expands and equates to zero
✓ factorises
✓ correct solutions

(c) $\sqrt{2}\sin x + 1 = 0, \ 0^{\circ} \le x \le 360^{\circ}.$

Solution

$$\sin x = -\frac{1}{\sqrt{2}}$$

$$x = 225^{\circ}, \quad x = 315^{\circ}$$
Specific behaviours
 \checkmark one correct solution
 \checkmark both correct solutions

(2 marks)

(7 marks)

(2 marks)

(a) *A* and *B* are independent events such that $P(A) = \frac{2}{3}$ and $P(B) = \frac{1}{4}$. Determine

(i)	$P(A \cap B)$.		(1 mark)
.,		Solution	
		2 1 1	
		$\frac{1}{3} \times \frac{1}{4} = \frac{1}{6}$	
		Specific behaviours	
		✓ calculates probability	
(ii)	P(R A)		(1 mark)
(")	I(D A).	Solution	(Thank)
		1	
		$\overline{4}$	
		Specific behaviours	
		\checkmark writes $P(B)$	
(iii)	$P(A \cup R)$		(2 marks)
(111)	$I(A \cup D).$	Solution	
		2 1 1 8 + 3 - 2 9 3	-
		$\frac{1}{2} + \frac{1}{4} - \frac{1}{6} = \frac{0}{12} = \frac{1}{12} = \frac{1}{4}$	
		Specific behaviours	
		✓ uses probability law	
		✓ calculates probability	

- (b) A number is selected at random from the set of positive integers. Event P occurs when the number is odd, event Q occurs when the number is a multiple of five and event R occurs when the number is a perfect square. Determine the smallest number that belongs to the following sets:
 - (i) $\overline{P} \cap (Q \cup R)$.

Solution
Even and either MF or PS: 4
Specific behaviours
✓ writes number

(ii) $\overline{P} \cap Q \cap R$.

Solution
Even and MF and PS: 100
Specific behaviours
✓ writes number

(1 mark)

(1 mark)

Expand $(x + 1)^4$. (a)

> Solution $(x+1)^4 = (1)(x)^4(1)^0 + (4)(x)^3(1)^1 + (6)(x)^2(1)^2 + (4)(x)^1(1)^3 + (1)(x)^0(1)^4$ $= x^4 + 4x^3 + 6x^2 + 4x + 1$ Specific behaviours ✓ correct method ✓ correct expansion

Determine the gradient of the curve $y = (x + 1)^4$ at the point (-2, 1). (b)

(2 marks)

Solution
$\frac{dy}{dx} = 4x^3 + 12x^2 + 12x + 4$
$x = -2 \Rightarrow \frac{dy}{dx} = 4(-8) + 12(4) + 12(-2) + 4 = -4$
Specific behaviours
✓ differentiates expression from (a)
✓ evaluates gradient

(4 marks)

(2 marks)

(5 marks)

(5 marks) Determine the gradient of the curve $y = x^2 + 4x - 45$ at the point(s) where it crosses the *x*-axis.

Solution
(x-5)(x+9) = 0
x = 5, x = -9
$\frac{dy}{dx} = 2x \pm 4$
$\frac{dx}{dx} = 2x + 4$
<i>d</i>
$x = 5, \frac{dy}{dx} = 14$
ax
dv
$x = -9, \frac{3}{dx} = -14$
At $(5,0)$ gradient is 14 and at $(-9,0)$ gradient is -14 .
Specific behaviours
✓ factorises quadratic
✓ determines roots
✓ derivative of quadratic
✓ one point and gradient
✓ second point and gradient

(7 marks)

(a) Determine the coefficient of the n^3 term in the expansion of $(3n - 1)^5$. (3 marks)

Solution
$(3n-1)^5 = \dots + {5 \choose 2} (3n)^3 (-1)^2 + \dots$
Coefficient is $10 \times 27 \times 1 = 270$
Specific behaviours
✓ identifies correct term
✓ uses $\binom{5}{2}$ in expansion
✓ correct coefficient

- (b) Consider the equation $x^3 7x^2 + 36 = 0$.
 - (i) Show that x = 3 is a solution of the equation. (1 mark)

Solution

$$27 - 63 + 36 = 63 - 63 = 0$$

Specific behaviours
 \checkmark substitutes and expands

(ii) Determine all other solutions.

Solution	
$x^3 - 7x^2 + 36 = (x - 3)(x^2 - 4x - 12)$	
= (x-3)(x+2)(x-6)	
Other solutions: $x = -2, x = 6$	
Specific behaviours	
✓ determines quadratic factor	
✓ factorises cubic	
✓ states other two solutions	

The line segment between the points A(3,2) and B(3,-4) is the diameter of a circle.

Determine the equation of circle in the form $x^2 + ax + y^2 + by = c$, where *a*, *b* and *c* are constants.

Solution	
Centre: $(3, \frac{2-4}{2}) = (3, -1)$	
Radius: $r = 21 = 3$	
Equation: $(x - 3)^2 + (y + 1)^2 = 3^2$	
$x^{2} - 6x + 9 + y^{2} + 2y + 1 = 9$ $x^{2} - 6x + y^{2} + 2y = -1$	
Specific behaviours	
✓ centre	
✓ radius	
✓ factored equation	
✓ correct equation	

(a)

(b)

Simplify $(2t - 5\sqrt{t})(2t + 5\sqrt{t})$.	
	Solution
	$(2t - 5\sqrt{t})(2t + 5\sqrt{t}) = (2t)^2 - (5\sqrt{t})^2$
	$=4t^2-25t$
	Specific behaviours
	✓ indicates use of difference of squares
	✓ correct simplification

Solve the equation
$$9^{2x} = \frac{\sqrt{3}}{81}$$
 for x.

$$\begin{array}{r} \textbf{Solution} \\ (3^2)^{2x} = 3^{0.5} \times 3^{-4} \\ 3^{4x} = 3^{-3.5} \\ 4x = -3.5 \\ x = -0.875 = -\frac{7}{8} \end{array}$$

$$\begin{array}{r} \textbf{Specific behaviours} \\ \checkmark \text{ writes 9 and 81 as powers of 3} \\ \checkmark \text{ simplifies RHS} \\ \checkmark \text{ correct solution} \end{array}$$

(c) Sketch the graph of
$$y = 2^{(2-x)}$$
 on the axes below.

(3 marks)

(2 marks)

(8 marks)